

CE DECLARATION OF CONFORMITY

Manufacturer: FAAC S.p.A.
Address: Via Calari, 10-40069 Zola Predosa BOLOGNA - ITALY
Declares that: The KP CONTROLLER device
complies with the essential safety requirements of the following EU Directive

2004/108/EC Electromagnetic Compatibility Directive
And also declares that it is prohibited to put into service the machinery until the machine in which it will be integrated or of which it will become a component has been identified and declared as conforming to the conditions of Directive 2006/42/EEC and subsequent amendments.

Bologna, 10-01-2013
The Managing Director
A. Marcella

1 DESCRIPTION

Fig. 1
The KP-CONTROLLER is used to select the operating modes, adjust and program the Series 950 automatic doors. It is divided into two parts: a fixed part for selecting the operating mode using buttons and corresponding LED (Fig. 2 ref. (1)), and a removable part with LCD and selection keys for accessing complete programming (Fig. 2 ref. (3)). The KP-CONTROLLER display can be used as a temporary programming unit by setting ON the parameter "Maintain settings" in the ADVANCED MENU: once all programming and adjustments have been made, the KP-CONTROLLER can be removed completely as all the settings are stored on the 950 MPS board.
If the KP-CONTROLLER is installed without a display, a cover is installed in its place (Fig. 2 ref. (2).

The KP-CONTROLLER can be inhibited using a key combination (see the special LOCK function) or a switch to create an internal jumper (Fig. 2 ref. LOCK).

2 INSTALLATION

Refer to Fig. 2 for the installation exploded view. There are two openings for running the connection cable.

3 CONNECTIONS

The KP-CONTROLLER must be connected to the 950 I/O board using a $2 \times 0.5 \mathrm{~mm}^{2}$ max 50 m cable (Fig. 2). If the two LOCK terminals are connected to each other, as shown in Fig. 2, all programmer keys are inhibited.

4 DIAGNOSTICS

The KP-CONTROLLER (even without display) features a diagnostic function which, in case of fault, interrupts every 2 sec. normal visualisation of the operating mode and signals for 1 sec . the fault condition through a combination of flashing LED. Refer to the table in figure 3 for the LED combinations and consequently the type of fault. Should more than one fault occur simultaneously, the code of the first one detected will be visualised.

Fig. 3

FAULT NUMBER	MEANING	LED STATUS:							
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
3	Attempt to force door open in progress	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	Emergency input active	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
8	Obstacle when opening detected three consecutive times. Reset required	\bigcirc							
9	Obstacle when closing detected three consecutive times. Reset required	\bigcirc							
10	Electric lock locked closed	\bigcirc							
12	No 24V= accessories power	\bigcirc							
13	failsafe test failed on closing	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	failsafe test failed on opening	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
15	Set-up prevented	\bigcirc							
18	Leaf stroke too long	\bigcirc							
20	Leaf stroke insufficient	\bigcirc							
22	Leaf too heavy	\bigcirc							
24	Motor failure	\bigcirc							
26	950 MPS board failure	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
28	Set-up cycle requested	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
29	Encoder failure	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
30	Motor drive on 950 MPS board failure	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
31	EEPROM failure	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
32	Master and slave communication error	\bigcirc							
	KP controller and 950 I/0 board communication error	\bigcirc							

5 OPERATING MODES

Fig. 4

| BUTTON
 NUMBER | MODE | FUNCTION |
| :---: | :---: | :---: | :---: |
| (7) The door is free and can be operated manually | | |

6 SPECIAL FUNCTIONS

6.1 SET UP

Set-up is the door initialisation function during which parameter self-learning is performed.
It is activated by simultaneously pressing (1) and (5) for 5 sec ., until all the LEDs go on.

6.2 RESET

Reset restores normal operating conditions following some types of faults.
It is activated by simultaneously by pressing (2) and (3) , until the KP controller goes off.

6.3 KP CONTROLLER LOCK (LOCK)

When activated, the Lock function inhibits operation of the KP-CONTROLLER.
It is activated by simultaneously by pressing (3) and (4) for 5 sec .

7 PROGRAMMING

To enter programming mode, when the monitor is displaying the day-date-time, press either $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$.
Programming is divided into main menus (see Diagram 1) arranged by subject.
Once the menu has been selected using $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$, press $\mathbf{O K}$ to access it.
Each menu is divided into various level sub-menus for setting parameters.
Use the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ keys to select the submenu or parameter and OK to confirm.
An asterisk on the display indicates the currently active setting.
To exit programming, select "exit" at each level; as an alternative, after approximately 2 minutes the display will automatically return to standard visualisation.
Following are the flow charts and notes describing the various menus and programming options.

Diagram 1: Main programming menu

Diagram 3: Setup

읒

әроэ ฉəəฝ๐эи

7.1 DIAGRAM DESCRIPTION

- 1 LANGUAGE (Diagram 2)

Selects the language in which the messages are displayed.

- 2 SETUP (Diagram 3) -

- 2.1 PARTIAL OPENING

Partial opening percentage
Selects the opening percentage (with reference to total opening) obtained when in "Partial Opening" mode. Standard value: 80\%
Adjustment: from 60\% to 100\%

- 2.2 PAUSE TIME

Pause time value
Sets the pause time in automatic operating modes.
Standard value: 2 sec.
Adjustment: from 0 to 30 sec.

- 2.3 NIGHT PAUSE TIME

Night pause time value
Sets the pause time in "night" operating mode.
Standard value: 7 sec .
Adjustment: from 0 to 30 sec.

- 2.4 OBSTACLE DETECTION

Determines the behaviour of the automated system in case of repeated obstacle detection during the same operation.
Standard: The automated system attempts to complete the operation.
No Standard: Following the detection of an obstacle for three consecutive times, the automated system stops. Once the obstacle has been removed, the door must be closed manually to restore normal operation

$$
\text { - } 3 \text { LOCK (Diagram 4) }
$$

- 3.1 LOCK KIT

On: Lock installed
Night: The electric lock locks the door only in "Night" mode. One-Way+Night: The electric lock locks the door in "Night" and "One-way" mode.
Always: The electric lock locks the door every time it closes, regardless of the set operating mode.
Off: Lock not installed.

- 4 DIAGNOSTICS (Diagram 5)

- 4.1950

Shows the port hardware model and the software version of the 950 MPS and 950 I/O boards to which the KPCONTROLLER is connected.

- 4.2 Nr. of CYCLES

Shows the count (not resettable) of the cycles performed by the automated system.

- 4.3 FAULT Nr.

Shows the number and description of the fault in progress. Refer to figure 3 for fault codes and descriptions.

- RESET

Performs the reset procedure and, if the cause of the previously signalled fault has been eliminated, it restores normal operation.

- 5 ADVANCED MENU

- PASSWORD

To access the advanced menu, the 4-digit password is required (default 0000).

- 1.1 CLOSING SPEED

Sets the door speed during closing.
Standard value: level 8
Adjustment: from 0 to 10

- 1.2 OPENING SPEED

Sets the door speed during opening.
Standard value: level 8
Adjustment: from 0 to 10

- 1.3 MAINTAIN SETTINGS

On: The automated system maintains the operating parameters set using the KP-CONTROLLER even if the latter is disconnected
Off: If the KP-CONTROLLER is disconnected, the opening and closing speed and the pause time must be set using the trimmers.

- 2 IN/OUT SETUP (Diagram 7)

- 2.1 EMERG

Sets the effect of the emergency command
(Emerg input on the 950 I/O board).
Standard setting: Opens/NC
Opens: Activating the command opens the door.
Closes: Activating the command closes the door.
No: Normally open input.
Nc: Normally closed input.

- 2.2 OUT OP/CL

Sets operation of the Open and Closed status outputs of the 950 I/O board.
Standard setting: N.O.
Nc: Normally closed output.
No: Normally open output

- 2.3 FAULT OUT

Sets operation of the Fault status outputs of the 950 I/O board.
Standard setting: N.O.
No: Normally open output.
Nc: Normally closed output.

- 3 OTHER (Diagram 8)

- 3.1 STANDARD SET UP

Makes it possible to verify if any non-standard programming has been performed.
Standard: If no standard programming function has been modified, an asterisk will be displayed. If the asterisk is not displayed, press "OK" to restore all the standard programming settings.
No Standard: If at least one standard programming function has been modified, an asterisk will be displayed.

- 3.2 INTERLOCK

The interlock function makes it possible to manage two doors (master and slave) so that opening of one depends on the closing of the other and vice versa.
Off: Interlock not active
On: Interlock active.

Master:Determines the master door (usually the inside one).
Slave: Determines the slave door.
No Memory: Using interlock, it is necessary to wait for one door to close before commanding opening of the other: open pulses sent during the operating cycle of the first door will have no effect.
With Memory: Using interlock, it is not necessary to wait for one door to close before commanding opening of the other: open pulses sent during the operating cycle of the first door will be memorised and the second door will open automatically as soon as the first is closed again.

- 3.3 2-LEAF

The "2-LEAF" function makes it possible to manage doors consisting of two leaves. The two automated systems (master and slave) manage movement of the door in a synchronous way. The Master function must be associated to the door that is the first to begin opening movement.
Off: "2-LEAF" function not active.
On: Activates the "2-LEAF" function.
Master: Determines the master door (should the leaves feature an overlap, that must always be the door that begins moving first).
Slave: Determines the slave door.

- 4 CHANGE PASSWORD

Sets the new password (4 digits) for accessing the advanced menu. Default 0000.

- 5 PROG TEST

Performs a functional test of the automated system. If a fault is detected, the automated system will stop and the KP-CONTROLLER signals the detected fault status.
Off: Test not active.
On: Activates test.

- 6 CLOCK (Diagram 9)

Set the current day, time and date.

- 7 TIMER (Diagram 10)

Off: Timer not activated.
On: Timer activated: the operation time bands set in "8 - Programming Timer" are enabled. When the timer is active, a "T" appears beside the time displayed and the KP-CONTROLLER will not allow operation selection.
The internal battery of the KP-CONTROLLER keeps the clock running even if there is no power. If the time is lost (e.g. black-out or discharged battery) a flashing asterisk is displayed in place of the " T ", the timer is disabled and the automated system switches automatically to NIGHT mode.

- 8 PROGRAMMING TIMER (Diagram 11)

Makes it possible to create up to 5 different time bands for each day of the week (setting the band start time) and give each time band an operative function. When the KPCONTROLLER internal clock reaches the start of a time band, the associated operative function is automatically set and the door stays in that condition until the following time band is triggered. To correctly manage the time bands, a permanent KP-CONTROLLER+Display connection is required.
Selecting the day. Select the day of the week
to create the time bands.
By selecting "All", the time bands
chosen afterward will be copied to all the days of the week.

Function Set the operative function to associate with the time band, using the following table as a reference:

FUNCTION	MEANING
0	No function
1	Automatic total two-way
2	Automatic total one-way
3	Automatic partial two-way
4	Automatic partial one-way
5	Door open completely
6	Door open partially
7	Manual
8	Night

Time band start
Set the time band activation time. The time frames do not need to be in chronological order.

- Example of Programming -

You want to program a door to open
-MONDAY to FRIDAY:

- from 08:00 in AUTOMATIC TWO-WAY TOTAL mode - from 18:00 inAUTOMATIC ONE-WAYTOTAL mode: - from 19:00 in NIGHT mode
-SATURDAY and SUNDAY: NIGHT mode all day Proceed as follows:

1) Select ALL and set:

TIME BAND1: FUNC. 1 08:00
TIME BAND2: FUNC. 2 18:00
TIME BAND3: FUNC. 8 19:00
TIME BAND4 : FUNC. 0
TIME BAND5: FUNC. 0
2) Select SATURDAY and set: TIME BAND1: FUNC. 0 TIME BAND2: FUNC. 0 TIME BAND3: FUNC. 0 TIME BAND4: FUNC. 0 TIME BAND5: FUNC. 0
3) Select SUNDAY and set: TIME BAND1: FUNC. 0 TIME BAND2: FUNC. 0 TIME BAND3: FUNC. 0 TIME BAND4: FUNC. 0 TIME BAND5: FUNC. 0
Note: to correctly use the TIMER function, the KPCONTROLLER battery must be efficient. In case of electrical power failure, the battery will keep the clock running. Should the battery discharge, the clock will reset and, once electrical power is restored, the KPCONTROLLER will automatically switch to NIGHT.
On automated systems that remain without electrical power for long periods of time (e.g.: 12 hours out of 24 for 365 days a year) it is advisable to replace the battery at most every 3 years.

8 SPECIAL APPLICATIONS

8.1 APPLICATION WITH TWO INTERLOCKED LEAVES

The interlock function makes it possible to manage two doors (master and slave) so that opening of one depends on the closing of the other and vice versa.
8.1.1 INTERLOCK WITH INTERNAL SENSORS

This application is recommended when the distance between the two doors is enough to prevent interference in the detection fields of the two internal sensors
-Connect the 950I/O equipment of the two automated systems and sensors as shown in fig. 5 .
-Programme the following functions (see advanced prog.): -"interlock" active on both doors - select "MASTER" on the inner door and "SLAVE" on the outer one
-for both doors select "interlock no memory" or "interlock with memory.
Important:
-The sensors must be connected only to the board Key input;
-The interlock works only if both doors are set to NIGHT or ONE-WAY mode.
The interlock operating phases are as follows:

1) The person standing outside activates sensor S1 of door 1;
2) Door 1 opens;
3) The person enters the space between the two doors;
4) Door 1 closes after the night pause time;
5) The person activates sensor S3 of door 2 (If "interlock with memory" is selected, it is not necessary to wait for the door to be closed completely to activate the sensor on the second one);
6) Door 2 opens;
7) The person exits;
8) Door 2 closes after the night pause time.

Operation is similar when coming from the opposite direction.
8.1.2 INTERLOCK WITHOUT INTERNAL SENSORS (buttons)

This application is recommended when the reduced distance between the two doors does not allow the use of two internal sensors; outside activation of the doors requires the installation of two buttons; not designed for use with presence sensors.
-Connect the 950I/O boards of the two automated systems, buttons and additional electronic components, as shown in fig. 6.
-Programme the following functions (see advanced prog.):
-"interlock" active on both doors,
-select "MASTER" for the inner door and "SLAVE" for the outer door and for both doors select "interlock with memory". Important:
-The buttons must be connected only to the board Key input; - The interlock works only if both doors are set to NIGHT or ONE-WAY mode.

1) The person standing outside activates button B1 of door A;
2) Door A opens;
3) The person enters the space between the two doors;
4) Door A closes after the night pause time;
5) Door B opens automatically;
6) The person exits;
7) Door B closes after the night pause time.

Operation is similar when coming from the opposite direction.

8.2 APPLICATION WITH 2-LEAF DOOR (MASTER AND SLAVE)

The 2-LEAF function makes it possible to manage two opposing doors with synchronised movements and set (not modifiable) delay angles.
The leaf controlled by the master automated system (see fig. 7) is the first to start opening and, when it has reached the opening angle set for the leaf delay, the slave will also begin its movement. In the same way, when closing, the master will start moving only when the slave has reached the closing angle set for the leaf delay.
Detection of an obstacle by one of the two automated systems causes immediate reversal of both.
The partial opening function makes it possible to control total opening only of the master.
The operating functions must be set only on the master automated system (or on the KP-Controller connected to it).

1. Connect the 950I/O board of the two automated systems as shown in fig. 8 .
2. Connect all the sensors and pulse transmitters only to the master.
3. Programme the following functions (see advanced prog.):

- "2-Leaf" active on both doors;
- select "MASTER" for the door that must start the opening movement first and "SLAVE" for the other;
- set the same motion parameters on both automated systems;
- if you wish to disconnect the KP-Controller from the slave door, the function "MAINTAIN SETTINGS" must be set to ON;
NOTE: the set-up must be carried out independently

SEDE - HEADQUARTERS

FAAC S.p.A.
Via Calari, 10
40069 Zola Predosa (BO) - ITALY
Tel. +39 05161724 - Fax +39 051758518
www.faac.it - www.faacgroup.com

ASSISTENZA IN ITALIA

SEDE
tel. +39 0516172501 www.faac.it/ita/assistenza

FIRENZE
tel. +39 055301194
filiale.firenze@faacgroup.com

SUBSIDIARIES

AUSTRIA

FAAC GMBH
Salzburg - Austria
tel. +43 6628533950
www.faac.at
FAAC TUBULAR MOTORS
tel. +49 3056796645
faactm.info@faacgroup.com
www.faac.at
AUSTRALIA
FAAC AUSTRALIA PTY LTD
Homebush, Sydney - Australia
tel. +61 287565644
www.faac.com.au

BENELUX

FAAC BENELUX NV/SA
Brugge - Belgium
tel. +32 50320202
www.faacbenelux.com
FAAC TUBULAR MOTORS
tel. +31475406014
faactm.info@faacgroup.com
www.faacbenelux.com

CHINA

FAAC SHANGHAI
Shanghai - China
tel. +86 2168182970
www.faacgroup.cn

FRANCE

FAAC FRANCE
Saint Priest, Lyon - France
tel. +33 472218700
www.faac.fr
FAAC FRANCE - AGENCE PARIS
Massy, Paris - France
tel. +33 169191620
www.faac.fr

FAAC FRANCE - DEPARTEMENT VOLETS

Saint Denis de Pile - Bordeaux - France
tel. +33 557551890
www.faac.fr

MILANO
tel +39 0266011163
filiale.milano@faacgroup.com
PADOVA
tel +39 0498700541
filiale.padova@faacgroup.com

ROMA

tel +39 0641206137
filiale.roma@faacgroup.com

TORINO

tel +39 0116813997
filiale.torino@faacgroup.com

GERMANY

FAAC GMBH
Freilassing - Germany
tel. +49 865449810
www.faac.de
FAAC TUBULAR MOTORS
tel. +49 3056796645
faactm.info@faacgroup.com
www.faac.de
INDIA
FAAC INDIA PVT. LTD
Noida, Delhi - India
tel. +91 120 3934100/4199
www.faacindia.com
IRELAND
NATIONAL AUTOMATION LIMITED
Boyle,Co. Roscommon - Ireland
tel. +353 0719663893
www.faac.ie

MIDDLE EAST

FAAC MIDDLE EAST FZE
Dubai Silicon Oasis free zone
tel. +97143724187
www.faac.ae
NORDIC REGIONS
FAAC NORDIC AB
Perstorp - Sweden
tel. +46435779500
www.faac.se

POLAND

FAAC POLSKA SP.ZO.O
Warszawa - Poland
tel. +48 228141422
www.faac.pl

RUSSIA

FAAC RUSSIA LLC
Moscow - Russia
tel. +74956462429
www.faac.ru

SPAIN

CLEM, S.A.U.
S. S. de los Reyes, Madrid - Spain
tel. +34 0913581110
www.faac.

SWITZERLAND

FAAC AG
Altdorf - Switzerland
tel. +41418713440
www.faac.ch

TURKEY

FAAC OTOMATIK GEÇí SIISTEMLERI SAN. VE TIC. LTD. ŞTi.
Çağlayan, Kağıthane, İstanbul - Turkey tel. +90 (0)212-3431311
www.faac.com.tr

UNITED KINGDOM

FAAC UK LTD.

Basingstoke, Hampshire - UK
tel. +44 1256318100
www.faac.co.uk

U.S.A.

FAAC INTERNATIONAL INC
Rockledge, Florida - U.S.A.
tel. +1 9044488952
www.faacusa.com
FAAC INTERNATIONAL INC
Fullerton, California - U.S.A.
tel. +1 7144469800
www.faacusa.com

